IPv4与IPv6数据报格式详解
摘要:
本文给出IPv4与IPv6数据报格式示意图,并整理了各个字段含义,最后对比IPv4与IPv6数据报格式的区别。
一、IPv4数据报
图1 IPv4数据报格式
版本号(version)
不同的IP协议版本使用不同的数据报格式。
首部长度(HL, Internet Head Length)
确定IP数据报中数据部分实际从哪里开始,包含可变数量的选项。若IP数据报没有包含选项,则IP数据报首部长度为20字节。
服务类型(TOS, Type Of Service)
更好地服务不同类型IP数据报(如实时数据报IP电话应用、非实时通信流FTP),Cisco将TOS前3位标识不同服务等级,即优先级。
数据报长度(TL, Total Length)
IP数据报长度,即首部+数据。
分片:标识(identification)、标志(flags)、段位移(Fragment Offset)
这3个字段跟IP分片有关,当目的主机从同一个源收到一批数据报时,需要确定这些数据报是完整数据报还是分片后的数据报,数据报首部标识字段解决这个问题,检查数据报的标识号确定哪些数据报真正是同一个较大数据报的片;如何判断最后一个分片已收到,数据报首部标志字段解决这个问题,将最后一片的标志为0,其他标记为1;如何顺序重组这些片,这就需要记录每个片的在数据报有效净荷的偏移量,这也确定了片是否丢失。若丢失某些片,则丢弃这个不完整的数据报(不会交给传输层)。需要可靠传输怎么办呢,由传输层让源重传原始数据摄中的数据(如TCP)。
寿命(TTL, Time To Live)
每次数据报经过一台路由器时,该字段的值减1,若TTL字段减为0,则丢弃该数据报,从而确保数据报不会永远在网络循环。
上层协议(Protocol)
该字段用于指明IP数据报的数据部分应该交给哪个传输层协议(6为TCP、17为UDP)。
首部检查和(Header Checksum)
只是对IP首部进行检验,对整个TCP/UDP报文段检验交由TCP/UDP完成。将首部中的每两个字节当作一个数,用反码运算对这些数求和,该和按1补码值存放在检查和字段。当路由器收到IP数据报时,计算其首部检查和,与该字段值比较,若出错则丢弃该数据报。
注:因为TTL字段及选项字段可能改变,所以每个路由器上的检查和都须重新计算并存放在原处。(检查后,再更新)
源和目的IP地址(Source/Destination Address)
选项(Options)
选项字段允许IP首部被扩展,由此导致数据报首部长度可变,故不能预先确定数据字段从何开始,同时也使路由器处理一个IP数据报所需时间差异很大(有的要处理选项,有的不需要)。
数据(Data)
当使用TCP/UDP协议时,数据即为传输层报文段(TCP/UDP)。数据字段也可承载其他类型数据,如ICMP报文段。
二、IPv6数据报
图2 IPv6数据报格式
版本号(version)
不同的IP协议版本使用不同的数据报格式。
通信量等级(Traffic Classes)
使得源节点和路由器能够识别IPv6信息包的优先级。与IPv4服务类型TOS字段含义类似。
流标签(Flow Label)
标记那些需要IPv6路由器特殊处理(如一种非默认服务质量或实时服务)的信息包顺序。
有效负载长度(Payload Length)
定长40字节数据报首部后面的字节数量,包括扩展报头和负载数据,即数据报长度-40。
下一个首部(Next Header)
当IPv6没有扩展报头时,该字段的作用和IPv4的上层协议字段一样。当含有扩展报头时,该字段的值即为第一个扩展报头的类型。
跳限制(Hop Limit)
转发数据报的每台路由器对该字段的值减1,若减为0则丢弃该数据报。
源和目的IP地址(Source/Destination Address)
数据(Data)
当数据报到达目的地时,该有效载荷就从IP数据报移出,并交给下一个首部字段中指定的协议。
源和目的IP地址(Source/Destination Address)
选项(Options)
选项字段允许IP首部被扩展,由此导致数据报首部长度可变,故不能预先确定数据字段从何开始,同时也使路由器处理一个IP数据报所需时间差异很大(有的要处理选项,有的不需要)。
数据(Data)
当使用TCP/UDP协议时,数据即为传输层报文段(TCP/UDP)。数据字段也可承载其他类型数据,如ICMP报文段。
三、区别
3.1 首部长度
首部长度可变,IPv4首部的选项字段允许IP首部被扩展,由此导致数据报首部长度可变,故不能预先确定数据字段从何开始,同时也使路由器处理一个IP数据报所需时间差异很大(有的要处理选项,有的不需要)。基于此,IPv6采用固定40字节长度的报头长度(称基本报头)。IPv6如何实现IPv4选项字段类似的功能,答案是扩展报头,并由IPv6基本报头的下一个首部指向扩展报头(如果有的话)。路由器不处理扩展报头,提升了路由器处理效率。
3.2 分片/重组
IPv6,分片与重组只能在源与目的地上执行,不允许在中间路由器进行。分片与重组是个耗时的操作,将该功能从路由器转移到端系统,大大加快了网络中的IP转发速率。那,如果路由器收到IPv6数据报太大而不能转发到出链路上怎么办?该路由器丢弃该包,并向发送发发回一个"分组太大"的ICMP差错报文,于是发送发使用较小长度的IP数据报重发数据。
3.3 首部检查和
每个路由器上,IPv4首部检查和都需要重新计算,是一项耗时操作。加之,传输层和链接层协议执行了检验操作,网络传输可靠性提升,所以IPv6不进行首部检查和,从而更快速处理IP分组。
既然IPv6有如此之多优势,那么,接下来的问题,如何从IPv4向IPv6迁移?
参考资料:
[1] 《TCP/IP指南》
[2] 《计算机网络--自顶向下方法与Internet特色》[M].
[3] 基于6LoWPAN的IPv6无线传感器网络的研究与实现[D].上海交通大学.
IPv4g和IPv6数据报格式visio原文件 IPv4g和IPv6数据报格式.rar
from:http://blog.chinaunix.net/uid-9112803-id-3206178.html
RFID管理系统集成商 RFID中间件 条码系统中间层 物联网软件集成