嵌入式 GDB调试死锁示例
睿丰德科技 专注RFID识别技术和条码识别技术与管理软件的集成项目。质量追溯系统、MES系统、金蝶与条码系统对接、用友与条码系统对接
死锁:一种情形,此时执行程序中两个或多个线程发生永久堵塞(等待),每个线程都在等待被
其他线程占用并堵塞了的资源。例如,如果线程A锁住了记录1并等待记录2,而线程B锁住了记录2并等待记录1,这样两个线程就发生了死锁现象。 gdb调试死锁的方法: gdb attach pid thread apply all bt 找到_lll_lock_wait 锁等待的地方。 然后查找该锁被哪个线程锁住了。 例如: 查看哪个线程拥有互斥体 (gdb) print AccountA_mutex $1 = {__m_reserved = 2, __m_count = 0, __m_owner = 0x2527, __m_kind = 0, __m_lock = {__status = 1, __spinlock = 0}} (gdb) print 0x2527 $2 = 9511 (gdb) print AccountB_mutex $3 = {__m_reserved = 2, __m_count = 0, __m_owner = 0x2529, __m_kind = 0, __m_lock = {__status = 1, __spinlock = 0}} (gdb) print 0x2529 $4 = 9513 (gdb) 从上面的命令中,我们可以看出AccontA_mutex是被线程 5(LWP 9511)加锁(拥有)的,而AccontB_mutex是被线程 3(LWP 9513)加锁(拥有)的。 找出死锁的地方,对应检查代码就可以了。死锁大多是对锁的使用发生交叉所致的,解决死锁的方法常有:有序资源分配法
<span style="font-family:Courier New;font-size:12px;">是操作系统中预防死锁的一种算法,这种算法资源按某种规则系统中的所有资源统一编号(例如打印机为1、磁带机为2、磁盘为3、等等),申请时必须以上升的次序。 系统要求申请进程: 1、对它所必须使用的而且属于同一类的所有资源,必须一次申请完; 2、在申请不同类资源时,必须按各类设备的编号依次申请。 例如:进程PA,使用资源的顺序是R1,R2; 进程PB,使用资源的顺序是R2,R1; 若采用动态分配有可能形成环路条件,造成死锁。 采用有序资源分配法:R1的编号为1,R2的编号为2; PA:申请次序应是:R1,R2 PB:申请次序应是:R1,R2 这样就破坏了环路条件,避免了死锁的发生。 另外,还有死锁避免,死锁检测与恢复等。 </span>